360 research outputs found

    Reduced-order neural network synthesis with robustness guarantees

    Get PDF
    In the wake of the explosive growth in smartphones and cyber-physical systems, there has been an accelerating shift in how data are generated away from centralized data toward on-device-generated data. In response, machine learning algorithms are being adapted to run locally on board, potentially hardware-limited, devices to improve user privacy, reduce latency, and be more energy efficient. However, our understanding of how these device-orientated algorithms behave and should be trained is still fairly limited. To address this issue, a method to automatically synthesize reduced-order neural networks (having fewer neurons) approximating the input-output mapping of a larger one is introduced. The reduced-order neural network's weights and biases are generated from a convex semidefinite program that minimizes the worst case approximation error with respect to the larger network. Worst case bounds for this approximation error are obtained and the approach can be applied to a wide variety of neural networks architectures. What differentiates the proposed approach to existing methods for generating small neural networks, e.g., pruning, is the inclusion of the worst case approximation error directly within the training cost function, which should add robustness to out-of-sample data points. Numerical examples highlight the potential of the proposed approach. The overriding goal of this article is to generalize recent results in the robustness analysis of neural networks to a robust synthesis problem for their weights and biases

    Optimal fast charging of lithium ion batteries: between model-based and data-driven methods

    Get PDF
    Delivering lithium ion batteries capable of fast charging without suffering from accelerated degradation is an important milestone for transport electrification. Recently, there has been growing interest in applying data-driven methods for optimising fast charging protocols to avoid accelerated battery degradation. However, such data-driven approaches suffer from a lack of robustness, explainability and generalisability, which has hindered their wide-spread use in practice. To address this issue, this paper proposes a method to interpret the fast charging protocols of data-driven algorithms as the solutions of a model-based optimal control problem. This hybrid approach combines the power of data-driven methods for predicting battery degradation with the flexibility and optimality guarantees of the model-based approach. The results highlight the potential of the proposed hybrid approach for generating fast charging protocols. In particular, for fast charging to 80% state-of-charge in 10 min, the proposed approach was predicted to increase the cycle life from 912 to 1078 cycles when compared against a purely data-driven approach

    The influence of fear of falling on the control of upright stance across the lifespan

    Get PDF
    Background Standing at height, and subsequent changes in emotional state (e.g., fear of falling), lead to robust alterations in balance in adults. However, little is known about how height-induced postural threat affects balance performance in children. Children may lack the cognitive capability necessary to inhibit the processing of threatand fear-related stimuli, and as a result, may show more marked (and perhaps detrimental) changes in postural control compared to adults. This work explored the emotional and balance responses to standing at height in children and compared responses to young and older adults. Methods Children (age: 9.7 ± 0.8 years, n=38), young adults (age: 21.8 ± 4.0 years, n=45) and older adults (age: 73.3 ± 5.0 years, n=15) stood in bipedal stance in two conditions: on the floor and 80cm above ground. Centre of pressure (COP) amplitude (RMS), frequency (MPF) and complexity (sample entropy) were calculated to infer postural performance and strategy. Emotional responses were quantified by assessing balance confidence, fear of falling and perceived instability. Results Young and older adults demonstrated a postural adaptation characterised by increased frequency and decreased amplitude of the COP, in conjunction with increased COP complexity (sample entropy). In contrast, children demonstrated opposite patterns of changes: they exhibited an increase in COP amplitude and decrease in both frequency and complexity when standing in a hazardous situation. Significance Children and adults adopted different postural control strategies when standing at height. Whilst young and older adults exhibited a (potentially protective) “stiffening” response to a height-induced threat, children demonstrated a (potentially maladaptive) ineffective postural adaptation strategy. These observations expand upon existing postural threat related research in adults, providing important new insight into understanding how children respond to standing in a hazardous situation

    Control of additive manufacturing for radio frequency devices with spatially varying dielectric properties

    Get PDF
    Additive manufacturing (AM) is increasingly being used to fabricate end-use and high-value-added parts in a range of industries. AM’s ability to create complex geometries and vary the internal composition of a part has enabled the design of many novel devices, including radio frequency (RF) devices that rely on the spatial variation of electromagnetic (EM) properties. However, current AM processes for fabricating complex parts are typically run without any part monitoring or online feedback control, and as a result, the printed parts may be compromised by defects or have poor tolerances. Manufacturing parts in this way also requires extra quality testing since there is no knowledge of their interior quality. For these reasons, introducing process monitoring and corrective action to the AM process has become an important area of research as AM is being used to create safety-critical parts. This work proposes a control algorithm to enable closed-loop control of an EM property, specifically dielectric permittivity, within a print using a fused filament fabrication (FFF) printer. The control system used a split-ring resonator (SRR) to measure the permittivity of printed thermoplastic, and the control action was applied by updating the printed infill density layer to layer. This control system was tested by printing a proof-of-concept graded-index (GRIN) lens with spatially varying permittivity through the lens’ length. The results demonstrate the ability of the controller to follow a constantly varying reference signal, indicating the potential of closed-loop control for improved fabrication of functional RF devices that depend on precise variations in relative permittivity

    Searching for chiral logs in the static-light decay constant

    Get PDF
    Using the clover fermion action in unquenched QCD with pion masses as low as 420 MeV, we look for evidence for chiral logs in the static-light decay constant. There is some evidence for a chiral log term, if the original static theory of Eichten and Hill is used. However, the more precise data from the static action of the ALPHA collaboration do not show any evidence for non-linear dependence of the static-light decay constant on the light quark mass. We make some comments on the connection between chiral perturbation theory for decay constants of the pion and static-light meson

    Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit

    Get PDF
    Quenched QCD simulations on three volumes, 83×8^3 \times, 123×12^3 \times and 163×3216^3 \times 32 and three couplings, β=5.7\beta=5.7, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass (\mres) whose size decreases as the separation between the domain walls (LsL_s) is increased. However, at stronger couplings much larger values of LsL_s are required to achieve a given physical value of \mres. For β=6.0\beta=6.0 and Ls=16L_s=16, we find \mres/m_s=0.033(3), while for β=5.7\beta=5.7, and Ls=48L_s=48, \mres/m_s=0.074(5), where msm_s is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of mπ2m_\pi^2 in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in fπf_\pi over our entire range, with inverse lattice spacing varying between 1 and 2 GeV.Comment: 91 pages, 34 figure

    Strategies to augment non-immune system based defence mechanisms against gastrointestinal diseases in pigs

    Get PDF
    AbstractOur study addresses the first two weeks of the weaning period of piglets during which stressful physiological and environmental conditions experienced by the animals can promote the proliferation of pathogens in the digestive tract. The aim of the study was to identify new feeding strategies that result in boosting the gastrointestinal tract (GIT) microbiota of piglets and improve growth performance, reducing the negative impact of weaning. In order to identify a new synbiotic combination, 12 new putative probiotic strains of Bifidobacterium spp. and three non-digestible oligosaccharides [NDO] were screened in newly weaned piglets. The ability to increase the level of autochthonous bifidobacteria and improve growth performance were assessed. Bifidobacteria strains with a similar ability to develop in the hindgut showed a different effect on piglet performance depending on the dose in which they were provided. Our data support the idea that the presence of fructo-oligosaccharides would stimulate the occurrence of bifidobacteria in the caecum. It was shown that dietary intake of nitrate can generate salivary nitrite, which in turn is acidified in the stomach and could have antimicrobial activity against swallowed pathogens. The efficacy of the resulting synbiotic formula was improved by adding nitrate as antimicrobial. To enhance probiotic survival during gastric transit, a novel technology of microencapsulation was developed and applied to bacteria. The final synbiotic, containing the strain RA 18 of Bifidobacterium animalis subsp. lactis [1011cfu/day], the prebiotic Actilight® [4% of the diet], and nitrate [150mg KNO3/kg feed/day] was tested in organic weaned piglets reared under field conditions. Results show that the strain Ra 18 had a probiotic effect in organic weaned piglets, as it colonized and remained detectable in faecal samples until two weeks after addition. The use of our synbiotic formula improved weight gain, feed efficiency and health status of the weaned piglets

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    QED Effective Action Revisited

    Get PDF
    The derivation of a convergent series representation for the quantum electrodynamic effective action obtained by two of us (S.R.V. and D.R.L.) in [Can. J. Phys. vol. 71, p. 389 (1993)] is reexamined. We present more details of our original derivation. Moreover, we discuss the relation of the electric-magnetic duality to the integral representation for the effective action, and we consider the application of nonlinear convergence acceleration techniques which permit the efficient and reliable numerical evaluation of the quantum correction to the Maxwell Lagrangian.Comment: 20 pages, LaTeX, 1 table; minor additions and adjustments; to appear in Can. J. Phy
    • …
    corecore